The elderly and infrastructure

Summary
The elderly have a larger than average death rate in traffic. The most important cause of this high death rate among the 75 year olds and older is their greater physical vulnerability. In addition, functional limitations can influence their road safety and can lead them to being more often involved in certain types of crashes. The elderly are relatively often involved in crashes that occur while turning left at intersections. Infrastructural measures can reduce the crash involvement of the elderly. Examples are a well-maintained contrast level of road markings and a positive offset of opposite left-turn lanes. They ensure that motorists get information in good time about the traffic situation they are approaching. This is especially important for the elderly because they generally need more time to select the right information and use it to take the correct action.

Why are specific measures for elderly road users important?
The ageing of the population is resulting in a larger proportion of elderly road users. Although this also applies to cyclists and pedestrians, it applies especially to motorists because a larger proportion of them will have a driving licence. Besides that, it is also expected that in the future the elderly will be more mobile than they are nowadays. These developments will lead to a larger proportion of the elderly in the total number of traffic casualties. Various measures can possibly influence this future scenario, such as adapting the road layout (infrastructure) in such a way that it takes into account the characteristics of the elderly road user.

What are the characteristics of the elderly road user?
The road safety of elderly road users is to a large extent determined by two factors: functional limitations and physical vulnerability.

Physical vulnerability
The elderly are physically more vulnerable than younger adults: their injuries will be severer given an identical collision impact. To illustrate this the following: with the same impact force, the death rate is approximately three times higher for a 75 year old motor vehicle occupant than for an 18 year old. The physical vulnerability has the severest consequences during ‘unprotected’ journeys such as walking and cycling. This physical vulnerability is a less important factor for motorists, but it still has an influence on injury severity. Protection devices like helmets for cyclists, mopedists, and slow moped riders, and seatbelts and airbags for motorists, can limit injury severity.

Functional limitations
As people age, functional limitations and disorders occur (such as reduced visual acuity and perception reaction time, having difficulties with dividing attention, and dementia), which can increase the crash rate of road users. This is particularly the case in the decline of motor functions. In general terms, this decline consists of a slowing down of movements, a decline in muscle strength, a decline in the finely tuned coordination, and a particularly strong decline in the ability to adapt to sudden changes in bodily position. This last aspect is especially important for cyclists and pedestrians, but also for those who use public transport (walking and standing in moving buses and trains). There are few indications that a decline in visual and cognitive functions, as part of normal ageing, also has road safety consequences. This is certainly not so if there is only a single functional limitation that can often be compensated for. For example, extra head and eye movements can compensate for a limited field of vision. Only in the case of severe sensory, perceptual, and cognitive limitations does the relation between functional limitations and crash involvement become visible (Brouwer & Davidse, 2002).

Which functional limitations are normal when ageing?
Functional limitations that accompany ageing and can contribute to crashes occurring are:
– a decline in various visual capabilities such as acuity of vision, peripheral vision, perception of depth and motion, and contrast sensitivity;
– a decline in the capacity to distinguish relevant from irrelevant information (selective attention);
– a decline in the capacity to divide attention between several tasks;
– a slower perception-reaction time;
– a reduced flexibility of neck and torso;
– a decrease in muscle strength.

What can infrastructural measures contribute?
An infrastructure that takes into account the functional limitations that accompany ageing can contribute to a reduction of the crash involvement of the elderly. In comparison with young motorists, the elderly, and particularly those of 75 years old and older, are relatively often involved in crashes that occur while turning left at an intersection. In addition, the elderly have relatively more trouble with merging, and exiting through-traffic, such as on a motorway. By designing measures specifically aimed at crash types in which the elderly are more often involved, their number can be reduced. This will also reduce the number of elderly casualties, since the elderly often are the most severely injured because of their greater physical vulnerability.

Which measures are possible?
Measures can be subdivided into those for motorists, those for cyclists, and those for pedestrians. Below you will find a small selection of measures for each of these three groups. You will find the complete list, together with details of the measures discussed here, in Davidse (2002).

Which measures answer the problems of elderly motorists?
The elderly motorists are over-represented in crashes while turning left. These crashes often occur because motorists do not give way to traffic going straight ahead: they either estimate the speed of the approaching vehicle incorrectly, or they simply have not seen it. These causes go together with the various functional limitations that accompany ageing, such as a decrease in depth and motion perception (necessary to determine speed and distance of approaching traffic) and a decline in divided and selective attention.

Intersection design
On intersections with traffic lights, errors in giving way and any resulting crashes can be prevented by a conflict free regulation: traffic that can collide does not get a green light simultaneously. In such a case, road users do not have to decide on whether it is safe to turn left. Intersections without traffic lights should be so designed that road users have an uninterrupted view of the traffic they must cross. Among other things, this means that the two roads should preferably cross at right angles, that bushes and buildings do not obstruct the view, but also that road users do not block each other's view (e.g. cars in the opposite left-turn lane waiting to turn left restrict the driver's view of oncoming traffic in the through lanes). This last can be prevented by a positive offset of opposite left-turn lanes. With such an offset, vehicles facing each other do not obstruct each other's view (Figure 1).

These measures are, of course, in every road user's interest. However, the elderly are even better served by timely information about the approaching traffic situation because they generally need more time to perceive motion and react to it.

Other measures
Not only crash data provide insight into the infrastructural adaptations needed, surveys and panel studies among the elderly can also give indications about traffic situations that need changing. Various
studies (Benekohal et al., 1992; Mesken, 2002) have shown that the elderly especially experience difficulty with:
- turning left at intersections, especially those without traffic lights;
- finding the correct lane for turning left;
- driving across an intersection, especially if it has no traffic lights;
- driving on a roundabout that has more than one lane;
- reading urban street signs;
- following road markings to see which way the lane goes;
- responding to traffic lights.

The elderly also indicated that the components of the road layout that become more important as one gets older are the road markings and street lighting at intersections, and the width of travel lanes. Measures that meet these needs are obvious: street lighting at intersections and a well-maintained contrast level of road markings ensure better visibility of the approaching road situation; larger letters on street signs and a greater contrast between the letters and their background make them easier to read at a distance. Timely information about the approaching situation (e.g. arrow markings and intersection lane control signs) gives the road user more time to make decisions and carry out tasks (e.g. choosing the correct lane or entering the desired road). You can find the details concerning the implementation of the above mentioned measures (such as the minimum contrast level to be used between road surface and lines) in Davidse (2002) and in Staplin, Lococo, Byington & Harkey (2001).

Which measures answer the problems of elderly cyclists?
In comparison with younger cyclists, elderly cyclists are more frequently the victim of crashes at road intersections without traffic lights. This means that the above measures for the layout of intersections will also have positive effects on the safety of elderly cyclists. If the elderly are asked which type of measures they regard as being necessary for them to feel safer when cycling, they are generally very positive about the use of cycle tracks (Steffens et al., 1999). They can cycle on such tracks with less stress and a more relaxed feeling than on the carriageway. Their wishes for improving road safety mainly involve laying more cycle tracks and making them broader. Other infrastructural measures that can improve the safety of elderly cyclists are those aimed at separating cyclists from cars and creating safe stopping locations where the cyclist has a good view of the intersection (Goldenbeld, 1992).

Which measures answer the problems of elderly pedestrians?
In comparison with younger pedestrians, elderly pedestrians are more often run over at a (zebra) crossing. This can be partly explained by the fact that the elderly will more often choose such a location to cross the road. Other factors that play a role are the generally slower walking speed of the elderly, their longer startup time, their being less able to distinguish approaching vehicles in the maze of the traffic surroundings, their being less able to correctly estimate the speed of approaching vehicles, their taking more time to notice vehicles coming from the side because of their more limited peripheral vision and their less flexible necks, and the fact that the elderly are less able to quickly move away from a possible crash opponent because of a slower reaction time and motor limitations.

In an Australian study (Oxley et al., 1995), the behaviour of elderly and younger pedestrians was studied when crossing complex intersections (with traffic from both directions) as well as when crossing less complex ones (with a dual carriageway). A comparison of the behaviour on these two types of intersections showed that the elderly were less safe in crossing than the younger pedestrians, especially on the complex intersections. The median at the less complex intersections makes decisions about crossing the road less difficult. Pedestrians only have to concentrate on traffic from one direction, and the distance to cover is smaller.

Based on the points mentioned earlier which increase the risks due to the crossing behaviour of the elderly, it can be derived that their safety will be improved by:
- decreasing the crossing distance by a median or by sidewalk extensions;
- placing traffic lights at more crossing locations;
- adjusting the traffic lights to allow for the slower walking speed of elderly pedestrians;
- slowing down the speed of other traffic or excluding motor vehicles completely from areas where there are a lot of pedestrians.
How do these measures compare with current Dutch guidelines?

A number of the above-mentioned infrastructural measures are already included in the Dutch guidelines for road layout. Where these guidelines are followed, this already leads to situations that are safer for elderly pedestrians. Where existing guidelines provide margins within which the road authority is free to choose a particular implementation, the elderly road user will profit from the safest value instead of the minimal value (e.g. the length of the merging lane or the angle at which roads cross each other). However, a number of measures are new, such as a positive offset of opposite left-turn lanes and guidelines for the upkeep of road markings.

What does this mean for the younger road users?

The measures discussed have been selected for their capacity to improve the safety of elderly road users. They will, however, also contribute to the safety of other road users. After all, measures, for example, that give more time to judge a traffic situation and make it possible to carry out traffic tasks step by step, make it easier for all road users. The diminished complexity of the traffic task will generally result in fewer human errors, and thus fewer crashes. The fact that infrastructural adaptations for the benefit of elderly road users also have (smaller) positive effects on the safety of other road users is an extra justification for taking such measures.

Conclusion

An infrastructure that takes into account the functional limitations that accompany ageing can contribute to reducing the crash involvement of the elderly. Of course the measures should be aimed at those crash types that are most common among the elderly: crashes when turning left and crashes when crossing the road. Measures that meet this requirement are, among others: a positive offset of opposite left-turn lanes, a well-maintained contrast level of road markings, using intersection lane control signs, and using a median to shorten the crossing distance. The common feature of the measures discussed is that they give road users more time and information to judge a traffic situation and that they make it possible to carry out the traffic task step by step. The result is a less complex traffic task. The diminished complexity will result in especially the elderly making less errors, but the other road users will also benefit.

Publications and sources

(Dutch SWOV reports have a summary in English)


